
Automated Generation of Message-Passing Programs-

An Evaluation Using CAPTools

Michelle R. Hribar, Haoqiang Jin and Jerry C. Yan

M/S T27A-2, NASA Ames Research Center, Moffett Field, CA 94035- 1000

Tel:(650)604-2872 E-maih{hribar, hj in, yan} @nas .nasa. gov

Abstract: Scientists at NASA Ames Research Center have been developing computational aeroscience applica-

tions on highly parallel architectures over the past ten years. During that same time period, a steady transition of

hardware and system software also occurred, forcing us to expend great efforts into migrating and re-coding our appli-

cations. As applications and machine architectures become increasingly complex, the cost and time required for this

process will become prohibitive. In this paper, we present the first set of results in our evaluation of interactive

parallelization tools. In particular, we evaluate CAPTool's ability to parallelize computational aeroscience applica-

tions. CAPTools was tested on serial versions of the NAS Parallel Benchmarks and ARC3D, a computational fluid

dynamics application, on two platforms: the SGI Origin 2000 and the Cray T3E. This evaluation includes perform-

ance, amount of user interaction required, limitations and portability. Based on these results, a discussion on the

feasibility of computer aided parallelization of aerospace applications is presented along with suggestions for future

work.

1 Introduction

1.1 Motivation

High performance computers have evolved rapidly over the past decade. Although new advances in architecture have

increased overall performance, they have also created limitations on programs' portability. Hand tuning applications

for each new machine achieves the best performance results, but at a high cost of time and effort. At NASA Ames

Research Center, high performance computing hardware is constantly updated to keep pace with new technology.

This translates to an average machine life span of 3 years. In the past, our scientists expended a very large effort for

every new machine in an attempt to fully utilize their computing performance potential. Currently, NASA is also

working on an Information Power Grid Initiative to produce a computational grid that will work in concert with

computational grids being assembled at PACI [15, 16]. In anticipation of a widely distributed and heterogeneous

computing envirc_nment, together with the increasing complexity of future applications, we may not be able to af-

ford to continue our porting efforts every three years. To protect investments in code maintentance and development,

the parallelization process needs to require less time and effort.

1.2 A Spectrum of Parallel Programming Alternatives

Generally speaking, four major approaches have been used to mount applications on parallel architectures:

1. Parallelization by hand;

2. Using semi-custom building blocks (PETSc [4], NHSE software [14]);

3. Data parallel languages and parallelizing compilers (HPF [8], FORTRAN-D [1], Vienna FORTRAN [5],

ZPL [18], pC++/Sage++ [11], HPC++ [10]); and

*MRJ Technology Solutions, Inc. M/S T27A-2, NASA Ames Research Center,
Moffett Field, CA 94035-10000

4. Computer aided parallelization tools and translators (KAP/Pro Tool-Set [13], SUIF [20], FORGExplorer

[12] and CAPTools [7]).

Parallelization by hand is usually the most effective method of achieving good performance on a given machine.

However, it is also the most time-consuming and expensive, often requiring the close cooperation among a team of

application scientists, system programmers and the machine vendor's support staff. Not surprisingly, the hand-coded

parallel code is often optimized for a particular machine and does not perform equally well on a wide range of archi-

tectures. The use of custom building blocks provides portability but limits the expression of the parallel program;

the programmer has to describe the problem solving process in terms of functions already provided in the software

library. This requires restructuring existing codes to make use of pre-defined functions offered in mathematical librar-

ies. The data parallel languages and compilers generate parallel code quickly, but often at the expense of perform-

ance. Automated tools and translators promise good performance without the work of hand-coding, but can lack

stability, especially for large unstructured applications.

1.3 Evaluation of Parallelization Approaches

To determine which, if any, of the parallelization approaches are appropriate for aerospace applications, we first need

to establish our parallelization needs, namely: 1) good performance, 2) less coding effort than hand parallelization, 3)

general enough to handle large, unstructured aerospace applications and 4) portability across heterogenous computing

platforms. The second parallelization need, reduced coding effort, limits the use of semi-custom building blocks

since that approach often requires significant rewrite of the source code. The fourth need, portability, limits the use

of parallelizing compilers for data parallel languages since those are often machine dependent and work primarily on

closely coupled and homogeneous multiprocessors. Therefore, we began our evaluation of parallelization approaches

with computer aided parallelization tools and translators, which is the subject of the study reported in this paper.

CAPTools[7], a computer aided parallelization tool, was selected to evaluate this computer aided approach for paral-

lelizing aerospace applications. We use serial versions of the NAS parallel benchmarks and ARC3D, a computa-

tional fluid dynamics (CFD) application, as our test suite representing the very basic requirements of aerospace

applications. For each of the test applications, we investigate what performance we can achieve and how much user

interaction is required. In addition, we need to verify that a computer aided approach can handle aerospace applica-

tions; for this reason, we identify the limitations of the tool. Finally, we evaluated the portability of this paralleli-

zation approach ; we tested CAPTools generated parallel code on two different platforms: the shared memory SGI

Origin 2000 and the distributed memory Cray T3E. Based on these initial experiments, we will make observations

about the feasibility of computer aided parallelization for aerospace applications.

1.4 Outline of the Paper

In this paper, we first describe the experimental environment in Section 2. We describe CAPTools, the computer

aided parallelization tool used in this study, the applications that were parallelized: serial versions of the NAS Paral-

lel Benchmarks version 2.3 and ARC3D, and the two test platforms used: the SGI Origin 2000 and the Cray T3E.

In Section 3, we present our experiences with CAPTools in the following areas: 1) performance, 2) user effort re-

quired, 3) limitations and 4) portability. Finally, in Section 4, we provide conclusions about the significance of this

study for the parailelization needs for CFD applications and how we plan to extend this research in the future.

2 Experimental Set-up

2.1 Computer Aided Parallelization Tool

As discussed in Section 1.2, the use of automated approaches for parallel programming is not a new idea. We want

to explore approaches that do not require extensive manual modification of the code, and that cater for execution on

distributed heterogeneous systems. Based on our initial survey, these concerns eliminate the semi-custom building

blocks, the data parallel languages and compilers, and the translators for shared memory machines.

Further elimination among the remaining candidates (FORGE Explorer DMP [12] and CAPTools [7]) was carried

out. FORGE Explorer DMP generates message-passing parallel code, but does not perform extensive dependency

analysis. Therefore, the user must still perform this step in order to generate efficient parallel code. CAPTools,

however, does perform extensive dependency analysis. For this important reason, we chose this tool as the basis of

our evaluation of computer aided parallelization.

CAPTools[7], a software package developed by researchers at the University of Greenwich, performs interactive par-

allelization of serial code using graphical interfaces. Version 1.3 beta was used for this study. CAPTools takes as

input sequential FORTRAN 77 code and generates parallel SPMD message-passing code as output. Communication

within the parallel code is performed via calls to the CAPTools communication library. Versions of this library,

which are based on libraries such as MPI and PVM, are available for many different high performance computing

platforms. The user must guide the parallelization process by deciding on the level of dependency analysis, the dat

partitioning strategy, etc. This user interaction will be described in detail in Section 3.2.

In order to facilitate this evaluation, the Automated Instrumentation and Monitoring System, or AIMS [21] was also

used to assist in the collection, analysis and visualization of performance data.

2.2 Test Applications

In this study, we wished to use applications that are representative of aeroscience applications. Because this study

represents our initial experiences, we started with the simple, basic benchmarks and applications--the NAS Parallel

Benchmarks (NPB) and ARC3D. The NPB's contain many of the basic routines and data structures contained in large

CFD applications. ARC3D is a full CFD application.

2.2.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB's) [2, 3, 6] were developed by researchers at the Numerical Aerodynamic Simu-

lation (NAS) Division at NASA Ames Research Center. These benchmarks were derived from CFD codes. They

were designed to compare the performance of highly parallel computers and are widely recognized as a standard indica-

tor of computer performance. NPB consists of five kernels and three simulated CFD applications derived from im-

portant classes of aerophysics applications. These five kernels mimic the computational core of five numerical

methods used by CFD applications. The simulated CFD applications reproduce much of the data movement and

computation found in full CFD codes.

For this case study, we used six of the NPB's: LU, SP, BT, FT, MG and CG.

LU is a simulated CFD application that uses symmetric successive over-relaxation (SSOR) to solve a block lower

triangular-block upper triangular system of equations resulting from an unfactored implicit finite-difference discretiza-

tion of the Navier-Stokes equations in 3D.

SP is a simulated CFD application that uses an implicit algorithm to solve the 3D compressible Navier-Stokes

equations. The finite differences solution to the problem is based on a Beam-Warming approximate factorization that

decouplesthex,yandzdimensions.Theresultingsystemhasscalarpentadiagonalbandsoflinearequationsthatare
solvedusingGaussianeliminationwithoutpivoting.Withinthealgorithm,thissolutionis performedby theADI
solver(alternatingdirectionimplicit)whichsolvesthethreesetsof systemsof equationssequentiallyalongeach
dimension.

BT is a simulated CFD application that solve systems of equations resulting from approximately factored implicit

finite-difference discretization of the Navier-Stokes equations in three dimensions. The BT code solves block-

tridiagonal systems of 5x5 blocks, but the solution algorithm has the same structure as SP.

FT contains the computational kernel of a three-dimensional Fast Fourier Transform (FFT)-based spectral method.

FT performs 3 one-dimensional FFT's, one for each dimension.

MG uses a multigrid method to compute the solution of the three-dimensional scalar Poisson equation. It requires

highly structured long distance communication and tests both short and long distance data movement. The algorithm

solves for the solution over the grid of data points that is recursively made coarse and then fine again. This changing

grid size requires that the arrays in the code are indirectly accessed.

CG uses a conjugate gradient method to compute an approximation to the smallest eigenvalue of a large, sparse,

symmetric positive definite matrix. This kernel tests unstructured grid computations and communications by using

a sparse, unstructured matrix with randomly generated locations of entries. CG, also requires indirect array accesses.

2.2.2 ARC3D

In addition to using the benchmarks, we also use a moderate size application, ARC3D[17], a well-known CFD code.

ARC3D was developed by Thomas Pulliam at NASA Ames Research Center. It solves Euler and Navier-Stokes

equations in three dimensions using a single rectilinear grid. A Beam-Wanning algorithm is used to approximately

factorize an implicit scheme of finite difference equations, which is then solved alternatively in three directions. The

implemented Alternating Direction Implicit (ADI) solver sweeps through each of the cardinal directions one at a

time, with partial updating of the fields after each sweep. ARC3D is similar in structure to SP, but is a more realis-

tic application. It includes a curvelinear coordinate system, turbulent model and more realistic boundary conditions.

2.3 Test Platforms

Two computing platforms were used in our experiments: a SGI Origin 2000 and a Cray T3E. Because CAPTools

generates communication based on a portable communications library, the same code can be tested on both plat-

forms. The Origin 2000 is a shared memory machine that has 64 processors sitting on top of 16GB of shared mem-

ory. The processors are arranged in pairs with 512MB local memory on a single card. Each processor has a MIPS

R10000 64-bit CPU (195 MHZ) with two 32KB primary caches and one 4MB secondary cache. The Cray T3E at

NASA/Goddard Space Flight Center consists of 512 processor elements (PEs), 64 gigabytes of globally addressable

memory, and 480-gigabyte disk. Each PE is a 64-bit DEC Alpha microprocessor (300 MHz) with an 8 KB primary

data cache and a 96 KB secondary cache that is three-way set associative.

3 Evaluation of Computer Aided Parallelization

3.1 Performance

The execution times of the CAPTools generated parallel versions of the benchmarks: LU, BT and SP are presented in

Figures 1, 2 and 3. (The other 3 benchmarks could not be parallelized using CAPTools; the reasons for this will be

discussedindetailin Section3.3.) FiguresI and2comparetheperformanceof theCAPToolscodeto thehand
codedMPIontheOrigin2000forproblemsizesClassA andClassB, respectively.Figure3providesthesame
comparisonontheCrayT3EforClassA. Figure4presentstheperformanceofARC3DontheOrigin2000andthe
CrayT3E.Becauseahand-codedparallelversionofARC3Ddoesnotexist,theCAPToolsgeneratedcodewascom-
paredagainstanideallinearspeedupcurve,whichisbasedontheexecutiontimeoftheserialcode.
Severalgeneralobservationscanbemade.First,theCAPToolscodefortheNPB'shassimilarperformanceasthe
hand-codedforoneprocessor,indicatingthattheserialcodeis closeto NPB2.3.Next,for all applications,the
CAPToolscodescaleswell;almostaswellasthehand-codedfortheNPB'sandclosetolinearforARC3D.

Morespecifically,forLU,theCAPToolscodeperformanceisveryclosetothatofNPB2.3(within10%of theexe-
cutiontime) becauseCAPToolsisabletogeneratecodethat is almost identical to the hand-coded version.

I(KMM) ..

BT Cla_ A

IO 1 ! I

O 5 lO 15 20 25

IIXXXI

I(XRI

I(X) +

IO I

0

Ii ..L L;L

"--u_

I I I

I0 20 3o

Number of Processors

I(XK_)

10

SP Clas._ A

_NPB I

5 I_) 115 20 25

Number of Pn_ces.a_rs

o

b-,

Figure 1: Execution time of LU, BT, SP Class A on Origin 2000

1(_)

I(XX)

BT Class B]

' I
I(R} [

i i i

0 5 I0 15 20 25

Number of Pr(_essors

Figure

I 0(XX)

ab

\

IOO i i i

0 lO 20 30

Number of Processors

LU Class B

1000

I()(FO()

SP Class B

1000 __

0 5 10 15 2(I 25

Number t)f Processors

2: Execution time of LU, BT, SP Class B on Origin 2000

I(KXX)

l(SX)

IlXl

I0

[]

BT Class A

I(X_X)

I{X_)

I(X)

10

LU Class A

20 40 _) (] 20 4(}

Number iff Processors Number of Processors

60

I(X]

10

0 I

0

i

SP Class A

I

[C APT'n'Is !

21) 40 60

Number of Processors

Figure 3: Execution time of LU, BT, SP Class A on Cray T3E

For BT, CAPTools code actually performs better than the hand-coded version for small numbers of processors. This

is because the serial code, which is the basis for the CAPTools generated code, has better cache optimization than

NPB 2.3. For larger number of processors, however, the hand-coded version has better performance because the

hand-coded version uses a highly specialized partitioning strategy, multiparitioning[19], to reduce communication. It

should be noted that while multipartitioning results in good performance for BT, it would not be applicable for a

typical CFD application. On the Origin 2000, it appears as though the CAPTools code outpertbrms the NPB 2.3

code for Class B. For this case, the Origin 2000 system was not isolated; therefore, the execution of the NPB 2.3

code probably had interference from other processes. We plan to test these codes again to confirm our supposition.

In general, the CAPToois code for BT was always within 20% of the execution time of the NPB 2.3.

The performance of the CAPTools parallel code for SP is not as similar to the hand-coded versions as those for LU

and BT. For small numbers of processors, the difference in performance between CAPTools and NPB 2.3 is within

20%. However, as the number of processors increases, this difference increases to up to 100%. Similar to BT, the

multipartitioning strategy used by NPB 2.3 SP has much better performance than the one or two dimensional parti-

tioning of CAPTools. The impact of the partitioning is greater on the performance of SP because it requires twice

as much communication as BT does.

o

[-,
e-,
o

1000 I

100

10

0

ARC3D Origin 2000

I t

10 20 30

Number of Processors

Figure 4: Execution Time

10000

100

I0

40 0

ARC3D Cray T3E

-.o--ldeal
CA_ools

I . t I

10 20 30

Number of Processors

of ARC3D on Origin 2000 and Cray T3E

40

j-

For ARC3D, the results were similar. CAPTools generates code that scales well, especially for the Cray T3E.

For all the test applications, the CAPTools code performs very well. We recognize that this is an important obser-

vation; however, there are other considerations for our evaluation. User interaction, limitations and portablility are

important concerns as well.

3.2 User Interaction

In CAPTools, as with any computer aided parallelization tool, the user must provide input to guide the paralleliza-

tion process. This includes both inputs to the tool as well as tuning of the resulting parallel code. In this section,

we discuss the types of interaction performed for this parallelization study. We comment about the nature of the

input and try to generalize beyond the specific tool that we used for our evaluation.

We note that the amount of time it took to generate good code using CAPTools was significantly less than that for

hand-coding. In all cases, it took at most a day to generate code using CAPTools and another several weeks to tune

it. In comparison it took several months to write the hand-coded versions of the NAS Parallel Benchmarks.

3.2.1 User Inputs

For all the applications, it was necessary to input the relative values of the major parameters of the application. In

all cases, this corresponded to entering the relative values of the problem size in each of the dimensions. This user

input was critical to achieving good performance; without this information, the tool cannot remove as many depend-

encies and generates extra, unnecessary communication.

While CAPTools requires that the user interact with the tool to provide this information, this may not be necessary

for other tools. Providing this information in a simple file to be read by the tool would be sufficient. Furthermore,

this information should be readily available from the user. Therefore, this input requirement does not represent a

significant burden for users.

3.2.2 Choice of Partitioning

When using CAPTools, the user must select the arrays to be partitioned and in which dimension(s) partitioning

takes place. Fortunately, the user does not need to specify every array to be partitioned; the tool will automatically

partition any array that is dependent on the chosen partitioned array(s). In all applications, it was sufficient to select

one major array to be partitioned and CAPTools partitioned the rest. Anyone with knowledge of his/her code should

be able to select the appropriate array to be partitioned.

The choice of which dimensions to partition is not so obvious. In our study, we experimented with partitioning in

one dimension versus two dimensions. To illustrate the importance of choosing a good partitioning scheme, we

compare the performance of both one and two dimensional partitioning for SP. Similar results were obtained for

LU, BT and ARC3D as well.

SP uses an ADI solver that solves for the x, y and z dimensions, one at a time. Therefore, computation in the parti-

tioned dimension of the parallel code must be pipelined. Figure 5 shows that one-dimensional partitioning for S P

results in a pipeline with a great amount of idle time. Only the z dimension is partitioned; the other two dimensions

do not require any pipelines or communication among processors.

(15)

(14)

(13)

(12)

(11>

(10)

(9)

(8)

(7)

(6)

OverV;EN

11111 t /

(4>

(3)

(2)

(1)

(0)

Copy Faces

870.3201 TIHE (_$eo) 14_. 3201

Figure 5: CAPTools-generated One-Dimensional Pipelining in SP

Figure 6 shows the two-dimensional partitioning for SP. Now there are pipelines and communication in two di-

mensions, but the pipelines are shorter and result in less idle time than the one-dimensional partitioning. There is

still significant idle time, however.

OverVIEW

(15)

(14)

(ii)

(9)'

(6);

(5)!

(4)!

(3) I

(2)

111,._JCopy Faces [Compute RHS [Z Sweep

Figure 6: CAPTools-generated Two-Dimensional Pipelining in SP

In general, all the codes we parallelized perform pipelined computation. For this reason, partitioning in two dimen-

sions is more effective. On the other hand, if the serial code did not use pipelined computation, partitioning in one

dimension may be more effective since it would result in fewer messages. Being able to select the best partitioning

strategy requires a good understanding of the code and often trial and error. This can be somewhat time consuming;

however, the advantage to using automated parallelization is that we can quickly generate code that uses different

partitioning and verify which scheme is best.

3.2.3 Communication Tuning

In CAPTools, not a lot of input is required from the user for generating communication. The user does have the

choice of buffering communication. In tuning the code, however, large amounts of communication identify bottle-

necks and lead to further revisions of the code. Tuning communication can require a lot of effort by the user, as will

be shown by the following example. This type of tuning is somewhat unavoidable; it is required by most paralleli-

zation approaches.

It is importantthatcommunicationis donecarefullybecauseit criticallyaffectsperformance.In thissection,we
showhowweinteractwithCAPTools,basedon feedbackfromAIMSvisualizations,to eliminateunnecessary
communication.Although only the results of tuning on LU is presented here, these were similar to both SP and

BT.

The first version of the code was generated automatically. The execution of the code on four processors on the SP2

is illustrated in a space-time diagram as shown in Figure 7. Horizontal bars represent computation in different sub-

routines (each has a different color), while the lines between the blocks represent communication and white spaces

represent idle times. It can be seen that subroutines erhs and rhs generate significant communication.

I lii i,3, ii i

,2, [i_ I

(I,

(o)

O. 0000 TD4E (msec) '1703.6300

Figure 7: Automated parallelized version of LU with no tuning

An inspection of Figure 7 shows that subroutines erhs and rhs communicate boundary values for several local

arrays, however, this communication is unnecessary since these values can be computed. To correct this, the user

asked CAPTools to remove partitioning performed for local arrays (local arrays being any arrays that are not depend-

ent on any data on another processor for their assignment), so that the boundaries of the array will be computed in-

stead of communicated. As shown in Figure 8, the total execution time decreased by 38% because of the reduction

in communication. Large amount of communication still exist in erhs and rhs due to large numbers of small

messages. We chose the "buffered communication" option and were able to reduce total execution time by another

8% as shown in Figure 9. The number of messages in the erhs and the rhs subroutines is reduced which results

in better performance.

Ove?VlEH

' 'i' '
(2) m

(£) I

(0)

O. 0000 TIPIE (reset) I0_2.7300

Figure 8: CAPTools generated LU without local array partitioning

9

(2)

,1)I

<).OK>O(>

Ov_VIEW

TIHE (mseo)

Figure 9: CAPTooIs generated LU based on "buffered communication"

3.2.4 Routine Copy

The final type of interaction we encountered was the necessity of copying routines. The reason that this is necessary

is that one routine is often called with different dimensions of a given array. When the array is partitioned, one ver-

sion of the routine can no longer handle unpartitioned dimensions and each of the partitioned dimensions. For ex-

ample, in ARC3D, the VPENTA3 and VPENTA routines needed to be copied to handle the different data partititons

for the one and two dimensional partitionings.

Copying routines requires some user knowledge of the code, but must be performed in order for the arrays to be parti-

tioned. CAPTools implements this as a user decision; however, it would be possible to automate this process for

simple cases such as the one encountered in ARC3D.

3.2.5 Rewriting Code

Finally, there is some tuning that cannot be performed using CAPTools; sometimes code must be rewritten by hand

in order to achieve good performance. This type of optimization was not required by the NPB's; however, it was for

ARC3D. In ARC3D, the solvers used for the x, y and z directions were originally written to solve for grid points

on one 2 dimensional plane at a time. When solving for the direction with partitioned data, the computation is pipe-

lined across the processors for each two dimensional plane being solved. This is portrayed in Figure 10, Version 1.

The AIMS trace diagram for Version 1 during the "Z sweep" shows many pipelines, each incurring idle time (shown

by the white space). In order to reduce this idle time, the computation was regrouped so that the three dimensional

grid points were solved at once, instead of two dimensions at a time. This results in one large pipeline and much

less idle time than with multiple small pipelines; this is illustrated in Figure 10, Version 2.

10

Xsweep Ysweep

Version 1, 1-D Partition

FILTER3D

Version 2, 1-D Partition

Figure 10: ARC3D: Comparison of versions

3.3 Limitations

Another important consideration of our evaluation is to identify the limitations of the tool. As mentioned previ-

ously, CAPTools could not parallelize all the benchmarks. In this section, we summarize the parallelization re-

quirements of the applications in order to best identify the shortcomings of the tool.

Table 1 provides four major dimensions are critical to parallelizing the test applications: grid structure, array access-

ing, communication and data partitioning. The + sign represents features that CAPTools can currently handle; the -

signs represent what it cannot. Therefore, if an application requires a feature not currently supported by CAPTools,

it cannot be parallelized. MG, CG and FT all contain at least one unsupported feature; therefore, theycannot be par-

allelized. On the other hand, LU, SP, BT and ARC3D can be parallelized in a relatively straightforward manner;

these applications all had structured grids with direct array accesses, communication with only nearest neighbors and

static partitioning. This is arguably the simplest case for a parallelization tool to handle. While it is reassuring that

CAPTools and computer aided parallelization in general can handle this simple case well, there are still more com-

plex considerations that must be addressed.

11

Application Grid Array

Struct. Unstruct. Direct

SP + +

LU + +

BT + +

MG +

CG

FT + +

ARC3D •4- -I-

Table 1: Summary of Parallelization

Access

Indirect

Communication

Neigh. Non-

neigh

+

Partitioning

Static Dynamic

+

+ +

+ +

- +

+ +

+ +

Requirements for test applications

First, in FT, the best parallelization approach involves distributing the data in such a way so that each one dimen-

sional FFT can be performed without communication. For example, when computing the FFT in the x dimension,

data should be distributed in the y and/or z dimensions so that there are no data dependencies between processors in

the x dimension. Otherwise, the amount of communication required within the one dimensional FFT calculation is

overwhelmingly prohibitive. The hand-crafted version in NPB 2.3 handles this data distribution problem by per-

forming data transpositions. For example, first the data is partitioned in the z dimension. The one-dimensional FFF

in the x and y dimensions can now be performed without any communication. Then, the data is transposed so that

the partitioned dimension is now the x dimension. Consequently, the one-dimensional FFT in the z dimension can

now be performed without requiring large amounts of communication. The transposition requires all-to-all commu-

nication, but it is much smaller than that required by a distributed FFF calculation. Unfortunately, since CAPTools

does not handle dynamic re-partition of data, we were not able to produce a parallel FT with comparable performance

at this point.

MG requires the grid to be distributed onto the nodes in a manner best described as "successively halved", starting

with the z dimension, the y dimension and then the x dimension, and repeated until all processors are assigned.

CAPTools cannot parallelize MG for two reasons. First, it performs only static, block data distribution, so the

changing grid size results in large amounts of communication to non-neighboring processors. CAPTools can per-

form this communication only through global broadcasts. Secondly, CAPTools cannot handle the indirect accessing

of arrays that is used in MG.

Finally, CG employs an unstructured grid and uses indirect array accesses which CAPTools does not support.

The unstructured grids, indirect array accesses and non-neighbor communication are critical elements of many large

aeroscience applications. Therefore, any computer aided parallelization tool needs to address these elements. Unfor-

tunately, this particular evaluation using CAPTools did not suggest that it could be done currently. Nevertheless,

the underlying technology for handling these elements is already in place; it is the technology that handles the sim-

ple case. Furthermore, subsequent beta versions of CAPTools are currently being tested which handle unstructured

grids, indirect array accesses and non-neighbor communication. These versions have been successful in handling

these concerns in test programs and show promise for parallelizing large aeroscience applications.

12

3.4 Portability

Portability is another important concern because of our rapid turnover of high performance computers and in antici-

pation of the Information Power Grid. CAPTools' portability is based on the generation of parallel code that con-

tains generic communication calls to a library, CAPLib. This CAPLib is unique to each architecture; however,

since it is based on lower level libraries such as MPI, PVM or shared memory library calls, it is trivial to port. For

example, the Origin 2000 CAPLib that is used in this study is based on MPI, but on the Cray T3E, we used the

CAPLib based on shmem library calls. Furthermore, the CAPLib library is linked with the executable at compile

time; therefore, the same version of the parallel code can be used on multiple architectures and platforms. Finally,

the good performance demonstrated by results on both the Origin 2000 and the Cray T3E confirms that the CAP-

Tools code is portable.

4 Conclusions and Future Research

Parallel programming is a difficult process; there are many challenges to generating efficient parallel code. In this

paper, we evaluated one approach to parallelization using an automated parallelization tool, CAPTools. We used a

test suite of applications including the NAS Parallel Benchmarks and a CFD application, ARC3D. We evaluated

CAPTools in four areas: 1) performance, 2) user interaction, 3) limitations and 4) portability.

For our test cases, we found that the performance and portability of CAPTools is similar to that of hand-coded pro-

grams using MPI. The tool is capable of handling codes using structured grids; however, it cannot currently handle

unstructured grids, indirect array accesses, non-neighbor communication or dynamic data distribution. In short, these

findings confirm what is already publicly accepted opinion of computer aided parallelization: the performance is good

for highly structured cases, but unstructured programs cannot currently be handled. Nevertheless, future versions of

CAPTools which are currently being tested suggest that these concerns will be able to be addressed eventually using

computer aided parallelization.

Furthermore, our study specifically identified the type of user interaction that is required by computer aided paralleli-

zation. Most of the interaction is simple and involves providing readily available information to the tool. Other

interaction, such as partitioning choices and communication tuning, require trial and error and performance evaluation

by the user. Even though the tuning process can be lengthy, the computer aided tool can significantly reduce the

time by automating the generation of successive parallel versions of the code. For example, CAPTools allowed us

to easily generate one and two dimensional partitionings for the same code so that we can determine the best ap-

proach. Finally, even though some rewriting of the code may be necessary to generate good code, the amount of

user interaction required by the computer aide d parallelization approach is significantly less than that required by

hand-coding.

In summary, our evaluation of the CAPTools shows that a computer aided parallelization approach performs very

well in three of the four areas that we evaluated: performance, amount of user interaction required and portability. The

fourth area, identifying the limitations of the tool, showed that CAPTools can handle structured grid problems.

Tests of future versions of CAPTools will be needed to further evaluate whether this approach effectively handles

large, unstructured problems.

A more extensive study is underway to incorporate performance of other parallelization tools/compilers (e.g. HPF

[8], SUIF [20], FORTRAN-D[I], other architectures (network of workstations), and other more complex applica-

tions (e.g. OVERFLOW). The results of some of these experiments will be reported in an upcoming paper.

13

5 Acknowledgments

The authors wish to acknowledge Mark Cross, Steve Johnson, C.S. Ierotheou, Emyr Evans and Pete Leggett for

their help with CAPTools. The authors also wishes to acknowledge the entire AIMS development team which in-

cludes Melisa Schmidt, Cathy Schulbach, and Michael Frumkin. The work described here is supported under

NASA's High Performance Computing and Communications Program.

6 References.

[1] Vikram S. Adve, John Mellor-Crummey, Mark Anderson, Ken Kennedy, Jhy-Chun Wang, and Daniel Reed,

"An Integrated Compilation and Performance Analysis Environment for Data Parallel Programs," presented at

Supercomputing '95, San Diego, CA, 1995.

[2] D. Bailey, J. Barton, T. Lasinksi, and H. Simon, "The NAS Parallel Benchmarks," NASA Ames Research

Center, Moffett Field, CA RNR-91-002, 1991.

[3] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, "The NAS Parallel Bench-

marks 2.0," NASA Ames Research Center, Moffett Field, CA RNR-95-020, 1995.

[4] Satish Balay, Bill Gropp, Lois Curfman McInnes, and Barry Smith, "PETSc Library". Argonne National

Laboratory: http://www.mcs.ani.gov/petsc/petsc.htmi.

[5] S. Benkner, "Vienna FORTRAN 90- An Advanced Data Parallel Language," presented at International Con-

ference on Parallel Computing Technologies (PACT-95), St. Petersburg, Russia, 1995.

[6] NAS Division NASA Ames Research Center, "NAS-Parallel Benchmarks", 2.3 ed. Moffett Field, CA:

http:l/science.nas.nasa.govISoftwarelNPB, 1997.

[7] M. Cross, C.S. Ierotheou, S.P. Johnson, P. Leggett, and E. Evans, "Software Tools for Automating the

Parallelisation of FORTRAN Computational Mechanics Codes," Parallel and Distributed Processing for

Computational Mechanics, 1997.

[8] High Performance FORTRAN Forum, "High Performance FORTRAN Language Specification Version 1.0,"

Scientific Programming, vol. 2, 1993.

[9] G.C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.W. Tseng, and M. Wu, "The FORTAN D

Language Specification," CRPC, Rice University CRPC-TR90079, 1990.

[10] Dennis Gannon, Peter Beckman, Elizabeth Johnson, Todd Green, and Mike Levine, "HPC++ and HPC++

Lib Toolkit," Indiana University, Bloomington, IN, 1997.

[11] Dennis Gannon, Shelby X. Yang, and Peter Beckman, "User Guide for a Portable Parallel C++ Programming

System pC++," Department of Computer Science and CICA, 1994.

[12] Applied Parallel Research Inc., "FORGE Explorer" : http://www.apri.com.

[13] Kuck and Associates Inc., "Parallel Performance of Standard Codes on the Compaq Professional Workstation

8000: Experiences with Visual KAP and the KAP/Pro Toolset under Windows NT,", Champaign, IL.

[14] NHSE, "HPC-Netlib Software Catalog" : http://nhse.cs.utk.edu/rib/repositories/hpc-netlib/catalog.

[15] NPACI, "http://www.npaci.edu/Research".

[16] PACI, "http://www.cise.nsf.gov/acir/paci.htmr'.

[17] T.H. Pulliam, "Solution Methods in Computational Fluid Dynamics," in Notes for the von Karman Institute

for Fluid Dynamics Lecture Series. Belgium: Rhode-St-Genese, 1086.

[18] Lawrence Snyder, "A ZPL Programming Guide," University of Washington, 1998.

14

[19] R.VanderWijngaart,"EfficientImplementationofa3-dimensionalADIMethodontheiPSC/860,"NASA
AmesResearchCenter,MoffettField,CA,1995.

[20] RobertP.Wilson,RobertS.French,ChristopherS.Wilson,SamanP.Amarasinghe,JenniferM.Anderson,
SteveW.K.Tjiang,Shih-WeiLiao,Chau-WenTseng,MaryW.Hall,MonicaLam,andJohnHennessy,
"SUIF:AnInfrastructureforResearchonParallelizingandOptimizingCompilers,"ComputerSystems
Laboratory,StanfordUniversity,Stanford,CA.

[21] J.C.Yan,S.R.Sarukkai,andP.Mehra,"PerformanceMeasurement,VisualizationandModelingofParallel
andDistributedProgramsusingtheAIMSToolkit,"Software Practice and Experience, vol. 25, pp. 429-461,

1995.

15

